
Isomet 2023-11-24

1

 iMS SDK Version Update Record

SDK v1-8-10

• Fixes bug prevented the serial port scan disable to function correctly.

Added a method for configuring the default connection scan using a configuration file on the
filesystem; C:\Users\<username>\AppData\Local\Isomet\iMS_SDK > connection.xml

SDK v1-8-9

• Fixes USB Handles resource leak

SDK v1-8-8

• Includes support for RF delay applied to both the first channel pair (Ch1/Ch2) and the second
pair (Ch3/Ch4). Applies to rev-D only, firmware after v4.1.129

• iMS Studio also now detects a iMS2-HF board and disables unused amplitude control sliders
displayed in the GUI.

• Corrects issue with linked amplitude control sliders in GUI (Sync Phase Pairs).

SDK v1-8-7

• Adds support for iMS4 rev-D, along with SignalPath class methods for X/Y channel delay and
Sync digital output additional features (inversion, individual pulse/level).

SDK v1-8-6

• Increased sequence count from 65K to 3M for controller hardware configured with High
Sequnece Count Option only.

SDK v1-8-5

• Fix log flush issue that prevented applications from closing down cleanly.

• Disable COM port scan on iMS Studio (ims_hw_server) to speed startup of GUI.

• Synchronise code base with Linux library.

• IP Config application fixed on Win 7.

Isomet 2023-11-24

2

SDK v1-8-4

• Sequences now download in bulk mode which means any sequence with a large number of
entries can be downloaded to the iMS system up to 100x faster **

• Fixes an issue that could have resulted in missed notifications from the iMS system to user
software (e.g. Sequence Start / Finish).

• Improvements to the iMS Studio app. Panels on the right hand side now start up collapsed

allowing you more workspace to modify image data. Hover over the tab to bring it into view
and click on the drawing pin to fix each tab in place.

• Sync Data has moved from the Signal Path tab into its own tab, while there are new buttons

in Signal Path for manual and automatic phase clear. Improvements have been made to the
application start-up which should prevent the occasional crash on opening iMS Studio.

** Existing C++ software will continue to download sequences in the former “slow” mode.
To use the new fast download facility, the code must include a SequenceDownloadSupervisor which
monitors the download events (similar to the process used for Image download) and reports to the
application when the sequence download has completed OK.

Pseudo code with a WaitForSequenceDownload() function is provided in Appendix-A to illustrate
the point.

Requires Firmware update 02020073 (FW v2-2-73) or later

It is necessary to upgrade the Controller firmware.
This will provide general speed enhancements, in addition the sequence download improvements
described above.

After installing the new SDK, drag the following file:

C:\Program Files\Isomet\iMS_SDK\v1.8.4\data\fw\44332\Q0910A-02020073.mcs

onto the upgrade script:
C:\Program Files\Isomet\iMS_SDK\v1.8.4\utils\ims_fw_upgrade\upgrade_me.bat

Power cycle the iMS4 when complete.

Users of the iMS2-HF should also upgrade using the file at:

C:\Program Files\Isomet\iMS_SDK\v1.8.4\data\fw\57686\Q0915A-01010023.mcs

Isomet 2023-11-24

3

Appendix A: WaitForSequenceDownload() function

#include "ImageOps.h"
#include "LibVersion.h"

using namespace iMS;
class SequenceDownloadSupervisor : public IEventHandler
 {
 private:
 std::atomic<bool> m_downloading{ true };
 std::atomic<bool> m_error{ false };
 public:
 void EventAction(void* sender, const int message, const int param)
 {
 switch (message)
 {
 case (DownloadEvents::DOWNLOAD_FINISHED): std::cout << "Sequence
Download Finished!" << std::endl; m_downloading.store(false); break;
 case (DownloadEvents::DOWNLOAD_ERROR): std::cout << "Download error
on message " << param << std::endl; m_downloading.store(false); m_error.store(true); break;
 case (DownloadEvents::DOWNLOAD_FAIL_TRANSFER_ABORT): std::cout <<
"Download failed: " << param << std::endl; m_downloading.store(false); m_error.store(true); break;
 }
 }
 bool Busy() const { return m_downloading.load(); };
 bool Error() const {
 return m_error.load();
 }
 void Reset() {
 m_downloading.store(true);
 m_error.store(false);
 }
 };

bool WaitForSequenceDownload(IMSSystem& ims, const ImageSequence& seq, bool
fast_download)
{
 std::unique_ptr<SequenceDownload> dl = std::make_unique<SequenceDownload> (ims,
seq);
 SequenceDownloadSupervisor ds;

 dl->DownloadEventsubscribe(DownloadEvents::DOWNLOAD_FINISHED, &ds);
 dl->DownloadEventsubscribe(DownloadEvents::DOWNLOAD_FAIL_TRANSFER_ABORT, &ds);
 dl->DownloadEventsubscribe(DownloadEvents::DOWNLOAD_ERROR, &ds);

 // Confirm that the linked iMS SDK supports the fast download process.
 // If it does, the library itself will check that the iMS firmware also supports it.
 // If either check fails, only the slower download process can be used.
 if (!LibVersion::HasFeature("FAST_SEQUENCE_DOWNLOAD")) {
 fast_download = false;
 }

Isomet 2023-11-24

4

 if (!dl->Download(fast_download)) {
 std::cout << "Error starting download" << std::endl;
 dl->SequenceDownloadEventUnsubscribe(DownloadEvents::DOWNLOAD_FINISHED,
&ds);
 dl-
>SequenceDownloadEventUnsubscribe(DownloadEvents::DOWNLOAD_FAIL_TRANSFER_ABORT,
&ds);
 dl->SequenceDownloadEventUnsubscribe(DownloadEvents::DOWNLOAD_ERROR,
&ds);
 return false;
 }

 while (ds.Busy() && fast_download) {
 std::this_thread::sleep_for(std::chrono::milliseconds(50));
 }

 dl->SequenceDownloadEventUnsubscribe(DownloadEvents::DOWNLOAD_FINISHED, &ds);
 dl-
>SequenceDownloadEventUnsubscribe(DownloadEvents::DOWNLOAD_FAIL_TRANSFER_ABORT,
&ds);
 dl->SequenceDownloadEventUnsubscribe(DownloadEvents::DOWNLOAD_ERROR, &ds);

 return !(ds.Error());
}

int main(int argc, char* argv)
{

 // Connect to iMS
 // Create and Download Images
 // Create your SequenceEntries and Sequences

 SequenceSupervisor seqs;
 SequenceManager seqMgr(myiMS);

 seqMgr.SequenceEventSubscribe(SequenceEvents::SEQUENCE_ERROR, &seqs);
 seqMgr.SequenceEventSubscribe(SequenceEvents::SEQUENCE_FINISHED, &seqs);
 seqMgr.SequenceEventSubscribe(SequenceEvents::SEQUENCE_START, &seqs);

 seqMgr.QueueClear();

 for (int n=0; n<total_seqs; n++) {
 std::cout << "Downloading Sequence " << n << std::endl;
 auto start = std::chrono::steady_clock::now();
 if (!WaitForSequenceDownload(myiMS, seq[n], true)) {
 std::cout << "Aborting.. <press any key>" << std::endl;
 char c;
 std::cin >> c;
 return 0;
 }

Isomet 2023-11-24

5

 auto duration = std::chrono::duration_cast<std::chrono::milliseconds>
 (std::chrono::steady_clock::now() - start);
 start = std::chrono::steady_clock::now();
 std::cout << "Sequence " << n << " Load took " << duration.count() << " msec" <<
std::endl;
 }

 std::cout << seqMgr.QueueCount() << " sequence(s) in queue" << std::endl;

 // Start Sequence Queue

 return 0;
}

